Kondrashov Compactness

Ethan Y. Jaffe

We show the following:

Theorem 1.1 (Kondrashov Compactness for $H^s(\mathbf{R}^n)$). Let $\mathcal{E}'(K)$ be the space of distributions whose support lies in the compact set K, and $t > s \in \mathbf{R}$. Then the inclusion

$$
H^t(\mathbf{R}^d) \cap \mathcal{E}'(K) \hookrightarrow H^s(\mathbf{R}^d)
$$

is compact.

Set $\langle \xi \rangle = (1 + |\xi|^2)^{1/2}$. Let φ_{ε} be a standard system of mollifiers. Notice that for $v \in H^t(\mathbf{R}^d),$

$$
||v * \varphi_{\varepsilon}||_{C^{k}(\mathbf{R}^{d})} \lesssim ||\langle \xi \rangle^{k} \hat{v} \hat{\varphi}_{\varepsilon}||_{L^{1}} \leq ||\hat{v} \langle \xi \rangle^{t}||_{L^{2}} ||\hat{\varphi}_{\varepsilon} \langle \xi \rangle^{k-t}||_{L^{2}} = C_{\varepsilon} ||v||_{H^{t}(\mathbf{R}^{d})},
$$

with $C_{\varepsilon} < \infty$ since $\hat{\varphi}_{\varepsilon} \in \mathcal{S}(\mathbf{R}^d)$. Also observe that $v * \varphi_{\varepsilon}$ is supported in supp $(v) + B(0, \varepsilon)$.

It follows that if $u_n \in H^t(\mathbf{R}^d) \cap \mathcal{E}'(K)$ is uniformly bounded in H^t , then for every $\varepsilon > 0$, and $k > s$, $u_n * \varphi_\varepsilon$ are uniformly bounded together with all their derivatives. Furthermore, their supports lie in the compact set $L = K + B(0, \varepsilon)$. From Arzela-Ascoli, it follows that for each $\varepsilon > 0$ there is a subsequence n_{ℓ}^{ε} for which

$$
u_{n_k^\varepsilon}*\varphi_\varepsilon\to u_\varepsilon\in C^0(L)
$$

in $C^0(L)$. However, the same is true of their derivatives. Since $K + B(0, \varepsilon)$ is open, we deduce that the convergence is actually in $C^k(L)$ (we lose a derivative since it provides the equicontinuity), and hence in $H^k(\mathbf{R}^d)$ as well, since all functions are compactly supported in L, and hence in $H^s(\mathbf{R}^d)$. Iterating this argument, we may thus pick a diagonal sequence n_k so that $u_{n_k} * \varphi_\varepsilon$ is convergent, and hence Cauchy in $H^s(\mathbf{R}^d)$ for $\varepsilon = 1, 1/2, 1/3, \ldots$

Next, we show that if $v \in H^t(\mathbf{R}^d)$, then for all $\delta > 0$ and $\varepsilon > 0$ is small enough, then $||v - v * \varphi_{\varepsilon}||_{H^{s}(\mathbf{R}^{d})} < \delta||v||_{H^{t}(\mathbf{R}^{d})}$. To prove this, notice that

$$
v \widehat{-v * \varphi_{\varepsilon}} = \hat{v}(1 - \hat{\varphi_{\varepsilon}}),
$$

and that $\hat{\varphi_\varepsilon} \to 1$ uniformly on compact sets. So

$$
||v - v * \varphi_{\varepsilon}||_{H^{s}(\mathbf{R}^{d})} = ||\hat{v}\langle \xi \rangle^{t} (1 - \hat{\varphi}_{\varepsilon}) \langle \xi \rangle^{s-t}||_{L^{2}(\mathbf{R}^{d})}. \tag{1.1}
$$

Since $s < t$, $\langle \xi \rangle^{s-t} \to 0$ as $\xi \to \infty$, in particular if R is large enough, $\langle \xi \rangle^{s-t} < \delta$ if $|\xi| > R$. On $|\xi| \leq R$, we may pick ε small enough so that $(1 - \varphi_{\varepsilon}) < \delta$. Since $\langle \xi \rangle^{s-t} \leq 1$,

$$
|(1-\hat{\varphi_{\varepsilon}})\langle\xi\rangle^{s-t}| < \delta
$$

everywhere. Plugging this bound into [\(1.1\)](#page-1-0) shows that

$$
||v - v * \varphi_{\varepsilon}||_{H^{s}(\mathbf{R}^{d})} \leq \delta ||\hat{v}\langle \xi \rangle^{t}|| = \delta ||v||_{H^{t}(\mathbf{R}^{d})},
$$

which is what we wanted to show.

Finally, we show that u_{n_k} (as above) is Cauchy in $H^s(\mathbf{R}^d)$, which suffices to prove the compactness of the inclusion. Suppose M is a uniform upper bound on $||u_n||_{H^t(\mathbf{R}^d)}$. Fix $\delta > 0$, and use the previous paragraph to choose $m > 0$ large enough so that

$$
||v * \varphi_{1/m} - v|_{H^s(\mathbf{R}^d)} \le \frac{\delta}{3M}||v||_{H^t}
$$

for all $v \in H^t(\mathbf{R}^d)$. Then

$$
||u_{n_k}-u_{n_j}||_{H^s(\mathbf{R}^d)} \leq ||u_{n_k}-u_{n_k}*\varphi_{1/m}||_{H^s(\mathbf{R}^d)}+||u_{n_j}-u_{n_j}*\varphi_{1/m}||_{H^s(\mathbf{R}^d)}+||u_{n_k}*\varphi_{1/m}-u_{n_j}*\varphi_{1/m}||_{H^s(\mathbf{R}^d)}.
$$

The first two terms are less than $\frac{1}{3}\delta$ each, and the last term can be made arbtrarily small for k, j large enough. This proves the Theorem.