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We show the following:

Theorem 1.1 (Kondrashov Compactness for H*(R™)). Let £'(K) be the space of distribu-
tions whose support lies in the compact set K, andt > s € R. Then the inclusion

HY(RYNE(K) — H*(RY)
18 compact.

Set (£) = (14 |¢]>)Y/2. Let . be a standard system of mollifiers. Notice that for
v € HY(RY),
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with C. < oo since ¢, € S(R?). Also observe that v * ¢, is supported in supp(v) + B(0, ¢).

It follows that if u, € H'(R%) N &'(K) is uniformly bounded in H', then for every ¢ > 0,
and k > s, u, * @. are uniformly bounded together with all their derivatives. Furthermore,
their supports lie in the compact set L = K + B(0,¢). From Arzela-Ascoli, it follows that
for each € > 0 there is a subsequence nj for which

Ups * P — U € C(L)

in CY(L). However, the same is true of their derivatives. Since K + B(0,¢) is open, we
deduce that the convergence is actually in C*(L) (we lose a derivative since it provides the
equicontinuity), and hence in H¥(R?) as well, since all functions are compactly supported
in L, and hence in H*(RY). Iterating this argument, we may thus pick a diagonal sequence
ny, so that wu,, * ¢, is convergent, and hence Cauchy in H*(R?) for e = 1,1/2,1/3,. ...

Next, we show that if v € H'(R?), then for all § > 0 and € > 0 is small enough, then
[[v —v* @c||grsray < O||v]|gemay- To prove this, notice that

—

v—v*xp. =0(1—¢),
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and that ¢. — 1 uniformly on compact sets. So

msmey = [[0(€) (1 — @)(€) N r2(may- (1.1)

Since s < t, (£)¥" — 0 as £ — oo, in particular if R is large enough, (£)57* < § if [¢| > R.
On |¢| < R, we may pick e small enough so that (1 — ¢.) < d. Since (£)57* <1,

(1= @) <0

everywhere. Plugging this bound into (1.1) shows that

[lv = v

o = % el 11 eay < SO Nl = b1l re ey

which is what we wanted to show.

Finally, we show that u,, (as above) is Cauchy in H*(R¢), which suffices to prove the
compactness of the inclusion. Suppose M is a uniform upper bound on ||uy||gi(gray. Fix
0 > 0, and use the previous paragraph to choose m > 0 large enough so that

Hs(Rd) < 3WHUHHt

HU*%/m —v

for all v € H'(R?). Then

||unk_un]-| Hs(R%) < ||unk_unk*@l/m| HS(Rd)+||unj_unj*§01/m| HS(Rd)—H|unk*§01/m_un‘j*(pl/m| Hs(R4)-

The first two terms are less than %5 each, and the last term can be made arbtrarily small
for k, j large enough. This proves the Theorem.



